A unified quantum SO(3) invariant for rational homology 3-spheres

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified So(3) Quantum Invariants for Rational Homology 3–spheres

Let M be a rational homology 3–sphere with |H1(M,Z)| = b. For any odd divisor c of b, we construct a unified invariant IM,c lying in a cyclotomic completion of a certain polynomial ring, which dominates Witten–Reshetikhin–Turaev SO(3) invariants of M at all roots of unity whose order r satisfies (r, b) = c. For c = 1, we recover the unified invariant constructed by Le and Beliakova–Le. If b = 1...

متن کامل

A Unified Witten-reshetikhin-turaev Invariant for Integral Homology Spheres

We construct an invariant JM of integral homology spheres M with values in a completion Ẑ[q] of the polynomial ring Z[q] such that the evaluation at each root of unity ζ gives the the SU(2) Witten-ReshetikhinTuraev invariant τζ(M) of M at ζ. Thus JM unifies all the SU(2) WittenReshetikhin-Turaev invariants of M . As a consequence, τζ(M) is an algebraic integer. Moreover, it follows that τζ(M) a...

متن کامل

Automorphic forms and rational homology 3–spheres

We investigate a question of Cooper adjacent to the Virtual Haken Conjecture. Assuming certain conjectures in number theory, we show that there exist hyperbolic rational homology 3–spheres with arbitrarily large injectivity radius. These examples come from a tower of abelian covers of an explicit arithmetic 3–manifold. The conjectures we must assume are the Generalized Riemann Hypothesis and a ...

متن کامل

An Extension of Casson's Invariant to Rational Homology Spheres

In 1985, Andrew Casson defined an invariant À(M) of an oriented integral homology 3-sphere M [C, AM]. This invariant can be thought of as counting the number of conjugacy classes of nontrivial representations nx (M) —• SU(2), in the sense that the Lefschetz number of a map counts the number of fixed points. Casson proved the following three properties of A. (i) If nx(M) = 1, then A(M) = 0. (ii)...

متن کامل

On the Quantum Invariant for the Brieskorn Homology Spheres

We study an exact asymptotic behavior of the Witten–Reshetikhin–Turaev invariant for the Brieskorn homology spheres Σ(p1, p2, p3) by use of properties of the modular form following a method proposed by R. Lawrence and D. Zagier. Key observation is that the invariant coincides with a limiting value of the Eichler integral of the modular form with weight 3/2. We show that the Casson invariant is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2010

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-010-0304-5